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1 Basic Discussion

Problem 1. The 4-diatance problem is an open Diophantine problem that asks if there exists a
point P (x, y) on the 2-dimensional Euclidean plane such that the distance PA,PB,PC, PD are all
rational numbers, where ABCD is a unit square A(0, 0), B(1, 0), C(0, 1), D(1, 1).

A first observation is that P has to be a rational point, i.e. x, y ∈ Q.

Proof. 1− 2x = (1− x)2 − x2 = PB2 − PA2 is rational. Same for y.

Acknowledgement. The author thanks Yuan Yang from London School of Geometry and Number
Theory for letting me notice this interesting open problem.

For the time being, I want to interpret this problem in the language of projective varieties.

Definition 1. Let X ⊂ P6 = ProjZ[x, y, r1, r2, r3, r4, z] be the projective variety defined by the
homogeneous ideal I(X) =< x2+y2−r2

1, (x−z)2+y2−r2
2, x

2+(y−z)2−r2
3, (x−z)2+(y−z)2−r2

4 >.

Our goal is to find rational points on X where z = 1. For the sake of convenience, I restrict the
base field to be R firstly, and I’ll discuss about the topology of X(R).

Definition 2. We define the projection map to be f : X(R) → RP2 = ProjR[x, y, z], p(x : y : r1 :
r2 : r3 : r4 : z) 7→ (x : y : z).
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Some properties of f are given as follows:

Proposition 1. i) f is well defined. Suppose p(x : y : r1 : r2 : r3 : r4 : z) ∈ X, and t ∈ R×, then
f(p) = (x : y : z) = (tx : ty : tz) = f(tp). Moreover, for any p ∈ X, we have (xp : yp : zp) 6= (0 : 0 : 0)
which does not belong to P2. So f is well defined indeed.

ii) Consider the coordinate chart {z 6= 0} on RP6 and identify this chart to R6, we may assume
zp = 1 for all such points p ∈ z 6= 0 ⊂ P6. Let

q1(0 : 0 : 1), q2(1 : 0 : 1), q3(0 : 1 : 1), q4(1 : 1 : 1)

p1(0 : 0 : 0 : ±1 : ±1 : ±
√

2 : 1), p2(1 : 0 : ±1 : 0 : ±
√

2 : ±1 : 1),

p3(0 : 1 : ±1 : ±
√

2 : 0 : ±1 : 1), p4(1 : 1 : ±
√

2 : ±1 : ±1 : 0 : 1)

(1)

then clearly pi = f−1(qi) gives the fiber of qi, 1 ≤ i ≤ 4. We claim that the set {f−1(qi), 1 ≤ i ≤
4} = {pi, 1 ≤ i ≤ 4} of 32 points are the only points where f acts singularly locally.

On the chart {z 6= 0} ⊂ RP6 we assume z = 1, let p(x : y : r1 : r2 : r3 : r4 : 1) ∈ X, q(x :
y : 1) = f(p) and p 6= pi, 1 ≤ i ≤ 4, then q 6= qi, 1 ≤ i ≤ 4. We claim that locally f is a smooth
diffeomorphism on a neighbourhood of p in X. The fiber of q is given by f−1(q) = {(x : y :
±
√
x2 + y2 : ±

√
(x− 1)2 + y2 : ±

√
x2 + (y − 1)2 : ±

√
(x− 1)2 + (y − 1)2 : 1)}.

Moreover, on the chart {y 6= 0} ⊂ RP6, we assume y = 1, let p(x : 1 : r1 : r2 : r3 : r4 : z) ∈
X, q(x : 1 : z) = f(p) and p 6= p3, p4, then q 6= q3, q4, z 6= 1. Since x2 + 1 = r2

1 6= 0, (x− z)2 + 1 =
r2

2 6= 0, x2+(1−z)2 = r2
3 6= 0, (x−z)2+(1−z)2 = r2

4 6= 0. Similarly, on the chart {x 6= 0} ⊂ RP6,
we assume x = 1 and let p(1 : y : r1 : r2 : r3 : r4 : z) ∈ X, q(1 : y : z) = f(p) and p 6= p2, p4,
then q 6= q2, q4, z 6= 1. So locally f is a smooth diffeomorphism on a neighbourhood of p in X
in both the above cases. Thus we see that f is a 16-fold covering from X(R)\{pi, 1 ≤ i ≤ 4} to
RP2\{qi, 1 ≤ i ≤ 4}.

We also consider the deformation of X(R) parametrized by a real number ε.

Definition 3. Let Xε ⊂ RP6 = ProjR[x, y, r1, r2, r3, r4, z] be the projective variety defined by the
homogeneous ideal I(Xε) =< x2 +y2 + εz2− r2

1, (x− z)2 +y2 + εz2− r2
2, x

2 + (y− z)2 + εz2− r2
3, (x−

z)2 + (y − z)2 + εz2 − r2
4 >. Note that in the definition above, the base field for Xε is R, whereas

X is defined over SpecZ. We first consider the real points Xε(R) of Xε. But actually, Xε can be
regarded as a variety over Q if we choose ε ∈ Q.

Let fε : Xε(R) → RP2, p 7→ (xp : yp : zp), here ε can take every real number value. We claim
that when ε > 0, fε is locally a smooth diffeomorphism everywhere on Xε(R), and globally it’s a
16-fold covering from Xε to RP2. Moreover, Xε(R) can be decomposed into the union of 8 disjoint
connected components as Xε(R) =

⊔
0≤i≤7Xε,i where each Xε,i is diffeomorphic to a 2-dimensional

sphere S2, and the exact form of the point set Xε,i are given in the proof.

Proof. i) First, we show that fε is well defined for any ε ∈ R. Since for any p ∈ Xε(R), t ∈
R×, fε(p) = fε(tp), and (xp : yp : zp) 6= (0 : 0 : 0), it is true.

ii) When ε > 0, we choose three charts {z 6= 0}, {y 6= 0}, {x 6= 0} ⊂ RP6. These three charts
covers all the points of Xε(R). We show that fε is locally a smooth diffeomorphism on each of the
three charts above.

On the chart {z 6= 0} ⊂ RP6, let zp = 1 for all the points p in this chart. For any p(x : y : r1 : r2 :
r3 : r4 : 1) ∈ Xε(R), we show that fε is locally a diffeomorphism. fε(p) = (x : y : 1) ∈ RP2, its inverse
is given by (x : y : 1) 7→ (x : y : ±

√
x2 + y2 + ε : ±

√
(x− 1)2 + y2 + ε : ±

√
x2 + (y − 1)2 + ε :

±
√

(x− 1)2 + (y − 1)2 + ε : 1) for properly chosen signs in front of r1, r2, r3, r4 locally. Note that
on this chart, fε is a 16-fold covering.
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Similarly, on the chart {y 6= 0} ⊂ RP6, let zp = 1 for all the points p in this chart. For
any p(x : 1 : r1 : r2 : r3 : r4 : z) ∈ Xε(R), fε(p) = (x : 1 : z) ∈ RP2, its inverse is given
by (x : 1 : z) 7→ (x : 1 : ±

√
x2 + 1 + εz2 : ±

√
(x− z)2 + 1 + εz2 : ±

√
x2 + (1− z)2 + εz2 :

±
√

(x− z)2 + (1− z)2 + εz2 : 1) for properly chosen signs in front of r1, r2, r3, r4 locally. So fε is a
local diffeomorphism.

On the chart {x 6= 0} ⊂ RP6, the case is similar to the case for {y 6= 0}, and we omit the proof
here. Note that fε is also a 16-fold covering on both charts {y 6= 0} and {x 6= 0}. We conclude
that fε is locally a smooth diffeomorphism everywhere on Xε(R), and globally it’s a 16-fold covering
from Xε to RP2.

iii) We give the connected components decomposition of Xε(R) as Xε(R) =
⊔

0≤i≤7Xε,i, and

show that each Xε,i is diffeomorphic to a 2-dimensional sphere S2. Since ε > 0, Xε(R) lies totally
in the chart {r1 6= 0} ⊂ RP6. Define a map g1 : Xε(R) → R3, for any p(x : y : r1 : r2 :
r3 : r4 : z) ∈ Xε(R), g1(p) = ( xr1 ,

y
r1
, zr1 ). For any t ∈ R×, g1(tp) = ( txtr1 ,

ty
tr1
, tztr1 ) = g1(p), so

g1 is well defined. The image of g1 is g1(Xε(R)) = S2
ε,1 = {x2 + y2 + εz2 = 1} ⊂ R3. For a

given point s1(x, y, z) ∈ S2
ε,1, its fiber is given by g−1

1 (s1) = {(x : y : 1 : ±
√
x2 + y2 + εz2 :

±
√

(x− z)2 + y2 + εz2 : ±
√
x2 + (y − z)2 + εz2 : ±

√
(x− z)2 + (y − z)2 + εz2 : z)}. We conclude

that g1 : Xε(R) → S2
ε,1 ⊂ R3\{0} is an 8-fold covering, and its locally a smooth diffeomorphism

everywhere on Xε(R). By the fiber coordinate formula given above, we know that Xε(R) can be
decomposed into 8 connected components according to the combinations of the signs of ( r2r1 ,

r3
r1
, r4r1 ).

We may write this decomposition as Xε(R) =
⊔

0≤i≤7Xε,i, where the exact correspondence between
Xε,i, 0 ≤ i ≤ 7 and the signs of ( r2r1 ,

r3
r1
, r4r1 ) are given in the following table:

i sgn( r2r1 ) sgn( r3r1 ) sgn( r4r1 )

0 + + +
1 - + +
2 + - +
3 - - +
4 + + -
5 - + -
6 + - -
7 - - -

Table 1: Correspondence between Xε,i and the signs of ( r2r1 ,
r3
r1
, r4r1 )

iv) What’s more, we can deal with Xε(R) similarly in the charts {r2 6= 0}, {r3 6= 0}, {r4 6= 0}
as what we have done in the chart {r1 6= 0}. Xε(R) lies totally in each of the above three charts.
We may define g2, g3, g4 : Xε(R) → R3 as follows: for any p(x : y : r1 : r2 : r3 : r4 : z) ∈ Xε(R),
let g2(p) = ( xr2 ,

y
r2
, zr2 ), g3(p) = ( xr3 ,

y
r3
, zr3 ), g4(p) = ( xr4 ,

y
r4
, zr4 ). Their images are given by

Im(g2) = S2
ε,2 = {(x− z)2 + y2 + εz2 = 1}, Im(g3) = S2

ε,3 = {x2 + (y − z)2 + εz2 = 1}, Im(g4) =

S2
ε,4 = {(x− z)2 + (y − z)2 + εz2 = 1}

A useful observation is that the topology of Xε(R) for positive ε is pretty simple. In the following
section, I’ll show that we can deduce a CW-complex stucture of X(R) by taking the limit ε → 0+

for ε > 0.
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2 Topological inspection of X(R) and Xε(R)

Recall that fε : Xε(R) → RP2, p 7→ (xp : yp : zp) is a 16-fold smooth covering. f : X(R) →
RP2, p 7→ (xp : yp : zp) is a 16-fold locally smooth covering almost everywhere on X(R) except for
32 exceptional points. To be exact, these 32 exceptional points on X(R) are given by pi = f−1(qi),
and the exact coordinates of pi, qi, 1 ≤ i ≤ 4 are given by equation 1 in the first section. We assign
indices to points in f−1

ε (q1) as follows:

Definition 4. Assume p(x : y : r1 : r2 : r3 : r4 : z) = p1,i,j to be a point in the fiber f−1
ε (q1)

where 0 ≤ i ≤ 7, 0 ≤ j ≤ 1. Its indices (i, j) can be uniquely determined as follows: i is the index
of the connected component Xε,i where p lies on, which is determined by the signs of ( r2r1 ,

r3
r1
, r4r1 ).

Put j = 0 for sgn( zr1 ) = 1, and j = 1 for sgn( zr1 ) = −1. Note that since fε(p) = q1, we must
have z 6= 0. So sgn( zr1 ) = ±1 are the only possible cases. Conversely, for every pair of such indices

(i, j), 0 ≤ i ≤ 7, 0 ≤ j ≤ 1, we can select a point p ∈ f−1
ε (q1) such that its indices determined as

the process above are (i, j). So we have f−1
ε (q1) = {p1,i,j , 0 ≤ i ≤ 7, 0 ≤ j ≤ 1}. More precisely, we

have:

p1,0,0(0 : 0 :
√
ε :
√

1 + ε :
√

1 + ε :
√

2 + ε : 1), p1,0,1(0 : 0 : −
√
ε : −

√
1 + ε : −

√
1 + ε : −

√
2 + ε : 1),

p1,1,0(0 : 0 :
√
ε : −

√
1 + ε :

√
1 + ε :

√
2 + ε : 1), p1,1,1(0 : 0 : −

√
ε :
√

1 + ε : −
√

1 + ε : −
√

2 + ε : 1),

p1,2,0(0 : 0 :
√
ε :
√

1 + ε : −
√

1 + ε :
√

2 + ε : 1), p1,2,1(0 : 0 : −
√
ε : −

√
1 + ε :

√
1 + ε : −

√
2 + ε : 1),

p1,3,0(0 : 0 :
√
ε : −

√
1 + ε : −

√
1 + ε :

√
2 + ε : 1), p1,3,1(0 : 0 : −

√
ε :
√

1 + ε :
√

1 + ε : −
√

2 + ε : 1),

p1,4,0(0 : 0 :
√
ε :
√

1 + ε :
√

1 + ε : −
√

2 + ε : 1), p1,4,1(0 : 0 : −
√
ε : −

√
1 + ε : −

√
1 + ε :

√
2 + ε : 1),

p1,5,0(0 : 0 :
√
ε : −

√
1 + ε :

√
1 + ε : −

√
2 + ε : 1), p1,5,1(0 : 0 : −

√
ε :
√

1 + ε : −
√

1 + ε :
√

2 + ε : 1),

p1,6,0(0 : 0 :
√
ε :
√

1 + ε : −
√

1 + ε : −
√

2 + ε : 1), p1,6,1(0 : 0 : −
√
ε : −

√
1 + ε :

√
1 + ε :

√
2 + ε : 1),

p1,7,0(0 : 0 :
√
ε : −

√
1 + ε : −

√
1 + ε : −

√
2 + ε : 1), p1,7,1(0 : 0 : −

√
ε :
√

1 + ε :
√

1 + ε :
√

2 + ε : 1).
(2)

We give indices to each p1(this is actually a set of 8 points till now) in the following way:

p1,0(0 : 0 : 0 : 1 : 1 :
√

2 : 1), p1,1(0 : 0 : 0 : −1 : 1 :
√

2 : 1),

p1,2(0 : 0 : 0 : 1 : −1 :
√

2 : 1), p1,3(0 : 0 : 0 : −1 : −1 :
√

2 : 1),

p1,4(0 : 0 : 0 : 1 : 1 : −
√

2 : 1), p1,5(0 : 0 : 0 : −1 : 1 : −
√

2 : 1),

p1,6(0 : 0 : 0 : 1 : −1 : −
√

2 : 1), p1,7(0 : 0 : 0 : −1 : −1 : −
√

2 : 1).

(3)

Notice that in the notations given above, the index i of p1,i bijectively corresponds to the signs
of (r2, r3, r4).

Note that in the notations above, p1,i,j is dependent on ε. We omit ε in the notations above
since there won’t be any ambiguities for the time being. The following theorem gives a CW-complex
structure on X(R) induced by that of Xε(R) for ε > 0, and take the limit ε→ 0+.

Proposition 2. From the discussions given above, for any 0 ≤ i ≤ 7, we have lim
ε→0+

p1,i,0 =

lim
ε→0+

p1,i∧7,1 = p1,i, where ∧ denotes the bitwise xor operation for binary integers.

Proof. It follows directly if we check the closed form of coordinates of {p1,i,j , and p1,i, 0 ≤ i ≤ 7, 0 ≤
j ≤ 1} given above carefully.
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The following theorem shows the way of adjunctions that joins the fibers f−1
ε (q2), f−1

ε (q3), f−1
ε (q4),

to the fibers f−1(q2), f−1(q3), f−1(q4) respectively. It’s statement is similar to the definition 4 and
proposition 2 above.

Definition 5. 1) Assume p(x : y : r1 : r2 : r3 : r4 : z) = p2,i,j to be a point on the fiber f−1
ε (q2)

where 0 ≤ i ≤ 7, 0 ≤ j ≤ 1 are uniquely determined as in the definition 4 above, that is, p2,i,j ∈ Xε,i

is the connected component that p lies on, j = 0 for sgn( zr2 ) = 1, and j = 1 for sgn( zr2 ) = −1. More
precisely, we have:

p2,0,0(1 : 0 :
√

1 + ε :
√
ε :
√

2 + ε :
√

1 + ε : 1), p2,0,1(1 : 0 : −
√

1 + ε : −
√
ε : −

√
2 + ε : −

√
1 + ε : 1),

p2,1,0(1 : 0 : −
√

1 + ε :
√
ε : −

√
2 + ε : −

√
1 + ε : 1), p2,1,1(1 : 0 :

√
1 + ε : −

√
ε :
√

2 + ε :
√

1 + ε : 1),

p2,2,0(1 : 0 :
√

1 + ε :
√
ε : −

√
2 + ε :

√
1 + ε : 1), p2,2,1(1 : 0 : −

√
1 + ε : −

√
ε :
√

2 + ε : −
√

1 + ε : 1),

p2,3,0(1 : 0 : −
√

1 + ε :
√
ε :
√

2 + ε : −
√

1 + ε : 1), p2,3,1(1 : 0 :
√

1 + ε : −
√
ε : −

√
2 + ε :

√
1 + ε : 1),

p2,4,0(1 : 0 :
√

1 + ε :
√
ε :
√

2 + ε : −
√

1 + ε : 1), p2,4,1(1 : 0 : −
√

1 + ε : −
√
ε : −

√
2 + ε :

√
1 + ε : 1),

p2,5,0(1 : 0 : −
√

1 + ε :
√
ε : −

√
2 + ε :

√
1 + ε : 1), p2,5,1(1 : 0 :

√
1 + ε : −

√
ε :
√

2 + ε : −
√

1 + ε : 1),

p2,6,0(1 : 0 :
√

1 + ε :
√
ε : −

√
2 + ε : −

√
1 + ε : 1), p2,6,1(1 : 0 : −

√
1 + ε : −

√
ε :
√

2 + ε :
√

1 + ε : 1),

p2,7,0(1 : 0 : −
√

1 + ε :
√
ε :
√

2 + ε :
√

1 + ε : 1), p2,7,1(1 : 0 :
√

1 + ε : −
√
ε : −

√
2 + ε : −

√
1 + ε : 1).

(4)
We give indices to each p2(this is a set of 8 points till now) in the following way:

p2,0(1 : 0 : 1 : 0 :
√

2 : 1 : 1), p2,1(1 : 0 : −1 : 0 : −
√

2 : −1 : 1),

p2,2(1 : 0 : 1 : 0 : −
√

2 : 1 : 1), p2,3(1 : 0 : −1 : 0 :
√

2 : −1 : 1),

p2,4(1 : 0 : 1 : 0 :
√

2 : −1 : 1), p2,5(1 : 0 : −1 : 0 : −
√

2 : 1 : 1),

p2,6(1 : 0 : 1 : 0 : −
√

2 : −1 : 1), p2,7(1 : 0 : −1 : 0 :
√

2 : 1 : 1).

(5)

Notice that in the notations given above, the index i of p1,i bijectively corresponds to the signs
of (r1, r3, r4), but the exact correspondence here is non-trivial.

2) Similarly, when p(x : y : r1 : r2 : r3 : r4 : z) = p3,i,j is a point on the fiber f−1
ε (q3) where

0 ≤ i ≤ 7, 0 ≤ j ≤ 1, its indices (i, j) are uniquely determined as: p3,i,j ∈ Xε,i is the connected
component that p lies on, j = 0 for sgn( zr3 ) = 1, and j = 1 for sgn( zr3 ) = −1. More precisely, we
have:

p3,0,0(0 : 1 :
√

1 + ε :
√

2 + ε :
√
ε :
√

1 + ε : 1), p3,0,1(0 : 1 : −
√

1 + ε : −
√

2 + ε : −
√
ε : −

√
1 + ε : 1),

p3,1,0(0 : 1 :
√

1 + ε : −
√

2 + ε :
√
ε :
√

1 + ε : 1), p3,1,1(0 : 1 : −
√

1 + ε :
√

2 + ε : −
√
ε : −

√
1 + ε : 1),

p3,2,0(0 : 1 : −
√

1 + ε : −
√

2 + ε :
√
ε : −

√
1 + ε : 1), p3,2,1(0 : 1 :

√
1 + ε :

√
2 + ε : −

√
ε :
√

1 + ε : 1),

p3,3,0(0 : 1 : −
√

1 + ε :
√

2 + ε :
√
ε : −

√
1 + ε : 1), p3,3,1(0 : 1 :

√
1 + ε : −

√
2 + ε : −

√
ε :
√

1 + ε : 1),

p3,4,0(0 : 1 :
√

1 + ε :
√

2 + ε :
√
ε : −

√
1 + ε : 1), p3,4,1(0 : 1 : −

√
1 + ε : −

√
2 + ε : −

√
ε :
√

1 + ε : 1),

p3,5,0(0 : 1 :
√

1 + ε : −
√

2 + ε :
√
ε : −

√
1 + ε : 1), p3,5,1(0 : 1 : −

√
1 + ε :

√
2 + ε : −

√
ε :
√

1 + ε : 1),

p3,6,0(0 : 1 : −
√

1 + ε : −
√

2 + ε :
√
ε :
√

1 + ε : 1), p3,6,1(0 : 1 :
√

1 + ε :
√

2 + ε : −
√
ε : −

√
1 + ε : 1),

p3,7,0(0 : 1 : −
√

1 + ε :
√

2 + ε :
√
ε :
√

1 + ε : 1), p3,7,1(0 : 1 :
√

1 + ε : −
√

2 + ε : −
√
ε : −

√
1 + ε : 1).

(6)
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We give indices to each p3(this is a set of 8 points till now) in the following way:

p3,0(0 : 1 : 1 :
√

2 : 0 : 1 : 1), p3,1(0 : 1 : 1 : −
√

2 : 0 : 1 : 1),

p3,2(0 : 1 : −1 : −
√

2 : 0 : −1 : 1), p3,3(0 : 1 : −1 :
√

2 : 0 : −1 : 1),

p3,4(0 : 1 : 1 :
√

2 : 0 : −1 : 1), p3,5(0 : 1 : 1 : −
√

2 : 0 : −1 : 1),

p3,6(0 : 1 : −1 : −
√

2 : 0 : 1 : 1), p3,7(0 : 1 : −1 :
√

2 : 0 : 1 : 1).

(7)

Notice that in the notations given above, the index i of p3,i bijectively corresponds to the signs
of (r1, r2, r4), but the exact correspondence here is non-trivial.

3) Similarly, when p(x : y : r1 : r2 : r3 : r4 : z) = p4,i,j is a point on the fiber f−1
ε (q4) where

0 ≤ i ≤ 7, 0 ≤ j ≤ 1, its indices (i, j) are uniquely determined as: p4,i,j ∈ Xε,i is the connected
component that p lies on, j = 0 for sgn( zr4 ) = 1, and j = 1 for sgn( zr4 ) = −1. More precisely, we
have:

p4,0,0(1 : 1 :
√

2 + ε :
√

1 + ε :
√

1 + ε :
√
ε : 1), p4,0,1(1 : 1 : −

√
2 + ε : −

√
1 + ε : −

√
1 + ε : −

√
ε : 1),

p4,1,0(1 : 1 :
√

2 + ε : −
√

1 + ε :
√

1 + ε :
√
ε : 1), p4,1,1(1 : 1 : −

√
2 + ε :

√
1 + ε : −

√
1 + ε : −

√
ε : 1),

p4,2,0(1 : 1 :
√

2 + ε :
√

1 + ε : −
√

1 + ε :
√
ε : 1), p4,2,1(1 : 1 : −

√
2 + ε : −

√
1 + ε :

√
1 + ε : −

√
ε : 1),

p4,3,0(1 : 1 :
√

2 + ε : −
√

1 + ε : −
√

1 + ε :
√
ε : 1), p4,3,1(1 : 1 : −

√
2 + ε :

√
1 + ε :

√
1 + ε : −

√
ε : 1),

p4,4,0(1 : 1 : −
√

2 + ε : −
√

1 + ε : −
√

1 + ε :
√
ε : 1), p4,4,1(1 : 1 :

√
2 + ε :

√
1 + ε :

√
1 + ε : −

√
ε : 1),

p4,5,0(1 : 1 :
√

2 + ε :
√

1 + ε : −
√

1 + ε :
√
ε : 1), p4,5,1(1 : 1 : −

√
2 + ε : −

√
1 + ε :

√
1 + ε : −

√
ε : 1),

p4,6,0(1 : 1 : −
√

2 + ε : −
√

1 + ε :
√

1 + ε :
√
ε : 1), p4,6,1(1 : 1 :

√
2 + ε :

√
1 + ε : −

√
1 + ε : −

√
ε : 1),

p4,7,0(1 : 1 : −
√

2 + ε :
√

1 + ε :
√

1 + ε :
√
ε : 1), p4,7,1(1 : 1 :

√
2 + ε : −

√
1 + ε : −

√
1 + ε : −

√
ε : 1).
(8)

We give indices to each p4(this is a set of 8 points till now) in the following way:

p4,0(1 : 1 :
√

2 : 1 : 1 : 0 : 1), p4,1(1 : 1 :
√

2 : −1 : 1 : 0 : 1),

p4,2(1 : 1 :
√

2 : 1 : −1 : 0 : 1), p4,3(1 : 1 :
√

2 : −1 : −1 : 0 : 1),

p4,4(1 : 1 : −
√

2 : −1 : −1 : 0 : 1), p4,5(1 : 1 : −
√

2 : 1 : −1 : 0 : 1),

p4,6(1 : 1 : −
√

2 : −1 : 1 : 0 : 1), p4,7(1 : 1 : −
√

2 : 1 : 1 : 0 : 1).

(9)

Notice that in the notations given above, the index i of p4,i bijectively corresponds to the signs
of (r1, r2, r3), but the exact correspondence here is non-trivial.

Note that in the notations above, p1,i,j is dependent on ε. We omit ε in the notations above
since there won’t be any ambiguities for the time being. The following theorem gives a CW-complex
structure on X(R) induced by that of Xε(R) for ε > 0, and take the limit ε→ 0+.

Proposition 3. From the discussions given above, for any 0 ≤ i ≤ 7, we have:
i) lim
ε→0+

p2,i,0 = lim
ε→0+

p2,i∧1,1 = p2,i; ii) lim
ε→0+

p3,i,0 = lim
ε→0+

p3,i∧2,1 = p3,i;

iii) lim
ε→0+

p4,i,0 = lim
ε→0+

p4,i∧4,1 = p4,i;

where ∧ denotes the bitwise xor operation for binary integers.

Proof. It follows directly if we check the exact form of coordinates of p2,i,j , p3,i,j , p4,i,j , and p2,i, p3,i, p4,i

for indices 0 ≤ i ≤ 7, 0 ≤ j ≤ 1 given above carefully.
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We are going to study the deformation Xε(R) of X(R) in the case when ε < 0. Notice that
actually we have the identity X(R) = X0(R). The behavior of fε when ε < 0 is more complicated
than the cases when ε > 0 or ε = 0. To get some insight to this scene, we first study a similar toy
model on RP3.

Definition 6 (Toy Model). We consider the deformation of cone singularity at the origin of
R3. Let Y ⊂ P3 = ProjZ[x, y, r1, z] be the projective variety defined by the homogeneous ideal
I(Y ) =< x2 + y2 − r2

1 >. Let Yε ⊂ RP3 = ProjR[x, y, r1, z] be the projective variety defined by the
homogeneous ideal I(Yε) =< x2 + y2 + εz2 − r2

1 >.

Theorem 1. 1) In the toy model given above, i) when ε > 0, Yε(R) is diffeomorphic to the 2-
dimensional unit sphere in R3.

ii) When ε = 0, Y0(R) = Y (R) is diffeomorphic to a 2-dimensional unit sphere with north and
south poles adjoined. We take this example as a typical model for all cone singularities.

iii) When ε < 0, Yε(R) is diffeomorphic to a 2-dimensional torus, which is the product variety
of two unit circles T = S1 × S1.

2) Return to the case of Xε(R) where ε < 0, we claim that Xε(R) is a smooth connected
2-dimensional variety diffeomorphic to a genus 25 orientable surface. Caution: The proofs of argu-
ments ii) and 2) are done intuitively, more rigorous proofs are needed in the future.

Proof. 1) Part i) is very simple, embed Yε(R) inside the chart {r1 6= 0} ⊂ RP3 gives the required dif-
feomorphism. More precisely, it’s given by g1 : Yε(R)→ R3, for any p(x : y : r1 : z) ∈ Yε(R), g1(p) =
( xr1 ,

y
r1
, zr1 ). g1 is well defined since its homogeneous of degree 0, and r1 6= 0 for any p ∈ Yε(R).

ii) We let ε vary continuously from some positive real value to 0, and consider the deformation of
Yε(R). Identify Xε(R) in the chart {r1 6= 0} with the image of g1 in R3, let n(0, 0, 1√

ε
), s(0, 0,− 1√

ε
) ∈

Xε(R) be its north and south poles respectively. Their homogeneous coordinates are n(0 : 0 :
√
ε :

1), s(0 : 0 : −
√
ε : 1) ∈ RP3. Change the chart to be {z 6= 0} and set z = 1, we see that the

coordinates of the poles are n(0, 0,
√
ε), s(0, 0,−

√
ε) in this chart. Let o(0 : 0 : 0 : 1) ∈ Y (R) be the

cone singularity, When ε→ 0+, we have n, s→ o, in this process we see that .
iii) For any p(x : y : r1 : z) ∈ Yε(R), let r =

√
x2 + y2 =

√
r2

1 − εz2, we see that r > 0 holds for
any p ∈ Yε(R). Define g1 : Yε(R) → Tε/±, p 7→ (xr : y

r : r1
r : z

r ), where Tε = {x2 + y2 = r2 − εz2 =
1} ⊂ R4, ± is the equivalence relation p ∼ −p. Actally Tε/± is the image of Tε through the
canonical quotient map /R× : R4\{0} → RP3. To see that g1 is well defined, take p ∈ Yε(R), t ∈ R×,
then g1(tp) = ( tx|tr| : ty

|tr| : tr1
|tr| : tz

|tr|) = sgn(t)(xr : y
r : r1

r : z
r ) = g1(p). To see that Tε/± is

orientable, one argument is that the linear endomorphism g : p 7→ −p of R4 is orientable since its
determinant is 1. Another approach is to parametrize Tε by (R/2πZ)2. Under this parametrization,
g(α, β) = (α + π, β + π), and we can thus visualize the action of g on a fundamental domain of
(R/2πZ)2, and verify that the quotient surface is indeed orientable.

2) The above depiction of cone singularities and the topological changes that happen near these
singularities during the deformation when ε → 0 can give us intuition on the topological structure
near pk,i,j , pk,i and sk,i for 1 ≤ k ≤ 4, 0 ≤ i ≤ 7, 0 ≤ j ≤ 1. Proposition 2 and proposition 3 shows
that locally at each of the 32 points pk,i, we are taking connected sum while varying ε from positive
to negative through 0. Since originally there are 8 spheres in Xε(R), ε > 0, and we know the way
of doing connected sums on these spheres, we conclude that the result manifold Xε(R), ε < 0 is
connected and has genus 25. Question: Why is it orientable?

Corollary 1. i) When ε > 0, the Z coefficient homology groups of Xε(R) is given by:

H2(Xε(R),Z) = Z8, H1(Xε(R),Z) = 0, H0(Xε(R),Z) = Z8.

7



ii) When ε = 0, the Z coefficient homology groups of X0(R) = X(R) is given by:

H2(X(R),Z) = Z8, H1(X(R),Z) = Z25, H0(X(R),Z) = Z.

iii) When ε < 0, the Z coefficient homology groups of Xε(R) is given by:

H2(Xε(R),Z) = Z, H1(Xε(R),Z) = Z50, H0(Xε(R),Z) = Z.

Now we move on to study the properties of fε when ε < 0. Recall that in proposition 1, we
showed that fε is well defined for any ε ∈ R. But we only consider the scenerio of ε > −1

4 for
negative ε in this paper.

Proposition 4. 1) For ε < 0, let s1, s2, s3, s4 ⊂ RP2 be four circles defined as follows:

s1 = {x2 + y2 = −εz2}, s2 = {(x− z)2 + y2 = −εz2},
s3 = {x2 + (y − z)2 = −εz2}, s4 = {(x− z)2 + (y − z)2 = −εz2}

(10)

Let f−1
ε (sk) be the fibers of sk, 1 ≤ k ≤ 4. We claim that for each fixed 1 ≤ k ≤ 4, f−1

ε (sk) can
be decomposed into 8 connected components as f−1

ε (sk) =
⊔

0≤i≤7 uk,i where for each 0 ≤ i ≤ 7,
uk,i ⊂ Xε(R) is diffeomorphic to a unit circle, and fε is an 8-fold smooth covering of sk while
restricted to f−1

ε (sk).
2) As long as p ∈ Xε(R) does not lie on any of the circles f−1

ε (sk), 1 ≤ k ≤ 4, locally fε is a
smooth diffeomorphism on a neighbourhood of p in Xε(R). Thus we see that globally fε is a 16-fold
covering from X(R)\{uk,i, 1 ≤ k ≤ 4, 0 ≤ i ≤ 7} to RP2\

⋃
1≤k≤4Dk, where Dk = int(sk) ∪ sk is

closed disk domain defined by sk and its interior. Dk has radius
√
−ε on the chart {z 6= 0}. Note

that the interior of a sufficiently small circle is well defined on RP2.

Proof. 1) We show that the shape of each sk, 1 ≤ k ≤ 4 is indeed a circle. For any fixed 1 ≤ k ≤ 4,
assume p(x : y : z) ∈ sk, notice that −ε > 0, so the equation that defines sk forces z 6= 0. We
may set z = 1, then the zeros of each of the four equations form a circle on R2. Recall that we
restrict the domain of ε to be (−1

4 , 0), so s1, s2, s3, s4 are four disjoint circles on the plane, and
their interiors are disjoint. To study the shape of f−1

ε (sk), we take k = 1 as an example. For any
p(x : y : r1 : r2 : r3 : r4 : 1) ∈ f−1

ε (s1), fε(p) = q(x : y : 1) ∈ s1 ⊂ RP2. Its inverse restricted
to a neighbourhood of p in f−1

ε (s1) is given by (x : y : 1) 7→ (x : y : 0 : ±
√

(x− 1)2 + y2 + ε :
±
√
x2 + (y − 1)2 + ε : ±

√
(x− 1)2 + (y − 1)2 + ε : 1) for properly chosen signs of r2, r3, r4 locally.

So f−1
ε (s1) has 8 connected components uk,i ⊂ Xε(R), 0 ≤ i ≤ 7 depending on the signs of r2, r3, r4

locally. Similar arguments hold for s2, s3, s4, and we may assign the indices of uk,i in such a way
that uk,i contracts to pk,i ∈ X(R) defined in definition 4 and definition 5 while taking the limit
ε→ 0−, for 1 ≤ k ≤ 4, 0 ≤ i ≤ 7.

2) Note that on the chart RP2\
⋃

1≤k≤4Dk, fε is a 16-fold covering. We claim that the gluing
functions between these 16 charts along their boundaries uk,i preserves their orientation, and may
be viewed as taking connected sums.

Actually we may proceed our argument in the language of group actions. Let G = (Z/2Z)4,
then G acts on Xε(R) by changing the signs of (r1, r2, r3, r4).

3 Topological inspection of X(C) and Xε(C)

3.1 Geometric invariants of complex algebraic varieties

For convenience, let V be a smooth, projective and geometrically integral variety over a field k.
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Definition 7. 1) Kodaira dimension κ = κ(V ) ∈ {−∞, 0, 1, ...,dimV }: Let ωV be the canonical
sheaf. Case i) If we have H0(V, ω⊗mV ) = 0 for any integer m ≥ 1, then define κ = −∞. Case ii)
If we have H0(V, ω⊗mV ) 6= 0 for some integer m ≥ 1. Then κ is the integer such that there exist
c1, c2 ∈ R+ such that

c1m
κ ≤ dimkH

0(V, ω⊗mV ) ≤ c2m
κ

holds for all m > 0 such that H0(V, ω⊗mV ) 6= 0.
2) Chern classes: there is a unique sequence of functions c1, c2, ... assigning to each complex

vector bundle E → V a class ci(E) ∈ H2i(V,Z), depending only on the isomorphism type of E,
such that:

a) ci(f
∗(E)) = f∗(ci(E)) for a pullback bundle f∗(E).

b) Via the Chern-Weil theory, a representative of each Chern class ck(V ) is given as the
coefficients of the characteristic polynomial of the curvature form Ω of V (defined by Ω = dω+ 1

2 [ω, ω],
where ω is the connection form and d is the exterior derivative):

det(I +
itΩ

2π
) =

∑
k

ck(V )tk

3) Hodge numbers: For a compact Kähler manifold V the torsion free part of the singular
cohomology Hn(V,Z) comes with a natural Hodge structure of weight n given by the standard
Hodge decomposition:

Hn(V,Z)⊗ C = Hn(V,C) =
⊕
p+q=n

Hp,q(V,C)

Here, Hp,q(V,C) could either be viewed as the space of de Rham classes of degree (p, q) or as the
Dolbeault cohomology Hq(V,Ωp

V )
4) Suppose E is a holomorphic vector bundle on V . For every p ≤ dimCV we have a sheaf Ωp(E)

whose sections are holomorphic (p, 0)-forms with coefficients in E. We set

Hp,q(V,E) = Hq(V,Ωp(E)), hp,q(V,E) = dimCH
p,q(V,E).

Then the holomorphic Euler characteristics is defined by

χp(V,E) =
∑
q≥0

(−1)qhp,q(V,E)

Proposition 5. Let V ⊂ Pnk be a nonsingular hypersurface defined by a degree-d polynomial. Then
the restriction map Hq(Pnk ,Ω

p
Pn
k
)→ Hq(V,Ωp

V ) is an isomorphism when p+ q < n− 1.

Proof. Let k = C, the weak Lefschetz theorem implies that the restriction map H i(Xan,C) →
H i(Yan,C) is an isomorphism for i < n− 1. The proposition is a consequence of this together with
the canonical Hodge decomposition and GAGA.

Theorem 2. 1) With the help of Macaulay2 software, we finished calculating of the Hodge diamond
of Xε(C), and it’s given by:

h0,0 = 1, h0,1 = 0, h0,2 = 7,

h1,0 = 0, h1,1 = 64, h1,2 = 0,

h2,0 = 7, h2,1 = 0, h2,2 = 1.

Caution: I’m pretty sure that these Hodge numbers from Macaulay2 aren’t correct. Terry Tao’s
blog gave another argument to prove that Xε(C) is a surface of general type.
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2) By examining the hodge numbers of Xε(C) given above and the Enriques-Kodaira classifica-
tion for complex algebraic surfaces, our conclusion is that, Xε(C) is a general type surface, and it’s
Kodaira dimension is κ(Xε(C)) = 2.

Proof. There are 3 relations about Chern numbers and Euler characteristic of V as follows:

c2
1 + c2 = 12 ∗ χ(V ), c2

1 ≤ 3c2, 5c2
1 − c2 + 36 ≥ 0.

We conclude that when V = Xε(C), 8 ≤ c1 ≤ 17. Since the Kodaira dimension κ(Xε(C)) = 2 when
c2

1, c2 > 0, we know that Xε(C) is a surface of general type. Remark: Terry Tao wrote a blog about
this topic, see [1]

3.2 Connections between real and complex algebraic varieties

We begin by listing some known results concerning the relationship between V (R) and V (C) for
any projective variety V over R. Recall that the homology groups of RPn and CPn are given by:

H0(RPn,Z) = Z, H2k−1(RPn,Z) = Z2, 1 ≤ k ≤ [
n

2
],

Hn(RPn,Z) = Z for odd n, Hn(RPn,Z) = 0 for even n,

H2k(CPn,Z) = Z, 0 ≤ k ≤ n, H2k−1(CPn,Z) = 0, 1 ≤ k ≤ n.

Theorem 3 (Thom65). Let V be a projective variety over R. Then∑
i

hi(V (R),Z2) ≤
∑
i

hi(V (C),Z2)

where hi(V (R),Z2), hi(V (C),Z2) denotes the dimension of the Z2-vector spaceH i(V (R),Z2), H i(V (C),Z2)
respectively. The equality frequently holds in this theorem. Question: When will the equality in
this theorem hold?

Good news is that, I’m confident that my calculation for the homology groups of X(R), Xε(R)
is correct. So by the above inequality, we know that the sum of the Hodge numbers of X(C) is at
least 34, and the sum of the Hodge numbers of Xε(C) is at least 52.

Theorem 4 (Sullivan71). Let V be a projective variety over R. THen

χ(V (R)) ≡ χ(V (C)) mod 2

where χ denotes the Euler characteristic. The choice of the coefficient field does not matter.

Now, all the Xε(C) are diffeomorphic for different non-zero ε with sufficiently small norm.

Proposition 6 (Warm up). 1) Let s be the conic curve s = ProjZ[x, y, z]/ < x2 + y2 − z2 >⊂ P2,
and we mainly consider its complex points s(C). Define a map f : s(C) → CP1, p(x : y : z) 7→
q(x : y). Then f is well-defined since f(tp) = f(p) and f(p) 6= (0 : 0). f is a 2-fold covering
when q 6= q0(−i : 1), q1(i : 1). f is a 1-fold covering on q0, q1 and s(C) ∩ {z = 0} = {q0, q1}. A
CW-complex and chain complex structure of s(C) is given by:

e2
0 = {z 6= 0,−π

2
< arg

z

x− iy
<
π

2
}, e1

0 = {z 6= 0, arg
z

x− iy
=
π

2
},

e2
1 = {z 6= 0,

π

2
< arg

z

x− iy
<

3π

2
}, e1

1 = {z 6= 0, arg
z

x− iy
= −π

2
},

e0
0(−i : 1 : 0), e0

1(i : 1 : 0), ∂2e
2
0 = e1

0 − e1
1, ∂2e

2
1 = e1

1 − e1
0, ∂1e

1
0 = ∂1e

1
1 = e0

1 − e0
0,

A2 = Ze2
0 ⊕ Ze2

1, A1 = Ze1
0 ⊕ Ze1

1, A0 = Ze0
0 ⊕ Ze0

1,
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So its homology group is given as follows (we provide those of s(R), which is just a unit circle,
as a comparison): Question: How to calculate its Hodge numbers?

H2(s(C),Z) = Z, H1(s(C),Z) = 0, H0(s(C),Z) = Z,
H1(s(R),Z) = Z, H0(s(R),Z) = Z

2) We also consider the degenerated conic curve s = ProjZ[x, y, z]/ < x2 + y2 >⊂ P2. The
complex variety s(C) is isomorphic to two complex projective lines gluing at one point. As a
comparison, s(R) is isomorphic to a single point, while for s′ = ProjZ[x, y, z]/ < x2 − y2 >⊂ P2,
s′(R) is isomorphic to two circles gluing at one point.

H2(s(C),Z) = Z2, H1(s(C),Z) = 0, H0(s(C),Z) = Z,
H1(s′(R),Z) = Z2, H0(s′(R),Z) = Z

We consider the deformation of cone singularity at the origin of C3. Let Y ⊂ P3 = ProjZ[x, y, r1, z]
be the projective variety defined by the homogeneous ideal I(Y ) =< x2 + y2 − r2

1 >. Let Yε ⊂
CP3 = ProjC[x, y, r1, z] be the projective variety defined by the homogeneous ideal I(Yε) =<
x2 + y2 + εz2 − r2

1 >, here we may take ε to be any complex number with sufficiently small norm.

Theorem 5. 1) In the toy model given above, i) A CW-complex structure of Y (C) can be given as
follows: let g : Y (C)→ CP2, p(x : y : r1 : z) 7→ q(x : y : z). Since g(tp) = g(p) and g(p) 6= (0 : 0 : 0),
g is well-defined. Its singularities are those points in Y (C) with r1 = 0. Let s = {x2+y2 = 0} ⊂ CP2,
on the chart {z 6= 0}, it is the union of two lines l0 = {x + iy = 0} and l1 = {x − iy = 0}. When
z = 0, s includes two points at infinity of l0, l1, they are l0,∞(−i : 1 : 0) and l1,∞(i : 1 : 0). The
intersection of l0 and l1 is q1(0 : 0 : 1). Claim: s is locally smooth everywhere besides q1. In the
chart {y 6= 0}, set y = 1, then s = {p(x : 1 : z), x2 + 1 = 0} ⊂ {y 6= 0} ⊂ CP2 is the union of two
parallel lines. Combining the depiction of s in the chart {z 6= 0}, our claim has been verified. So
the CW-complex structure and homology of s can be given as:

q1(0 : 0 : 1), l0 = {x+ iy = 0}\{q1}, l1 = {x− iy = 0}\{q1},
A2 = Zl0 ⊕ Zl1, A1 = 0, A0 = Zq1,

H2(s,Z) = Z2, H1(s,Z) = 0, H0(s,Z) = Z.

l0, l1 given above contains their points at infinity, and are diffeomorphic to the complex line C1. All
the boundary maps in the chain complex above are zero.

g is a 2-fold covering from Y (C)\g−1(s) to CP2\s. For any q(x : y : z) ∈ CP2\s, g−1(q) = (x :
y :
√
x2 + y2 : z). g is a 1-fold covering from g−1(s) to s. Let π : CP2\s → CP1\{0,∞} = C\{0}

be a fiber bundle defined by π : (x : y : z) 7→ (u : v), u = x + iy, v = x − iy. Then π is well-
defined since π(tp) = π(p), t ∈ C× and u, v 6= 0 on CP2\s. Since x = 1

2(u + v), y = 1
2i(u − v),

its inverse is defined by π−1(w) = (1
2(u + v) : 1

2i(u − v) : z) ' C1 for w(u : v) ∈ CP1\{0,∞}.
So every fiber of a single point is isomorphic to C1. Actually we can extend the definition of π
to π : CP2\{q1} → CP1, (x : y : z) 7→ (x + iy : x − iy). It is well-defined outside {q1}, and
π(l0) = (0 : 1) = w0, π(l1) = (1 : 0) = w∞. A CW-complex and chain complex structure of CP1 is
given as follows:

w0(0 : 1), w∞(1 : 0),

e1 = {w,<(w) < 0,=(w) = 0}, e2 = CP1\{w0, w∞}\e1,

∂2e
2 = 0, ∂1e

1 = w∞ − w0.
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We get a CW-complex and chain complex structure of CP2\{q1} through a lift-up along π−1:

CP2\{q1} = e4te3 t l0 t l1,

e4 = π−1(e2) = {(x : y : z), x+ iy 6=0, x− iy 6= 0, arg
x+ iy

x− iy
6= π},

e3 = π−1(e1) = {(x : y : z), x+ iy 6=0, x− iy 6= 0, arg
x+ iy

x− iy
= π},

l0 = π−1(w0), l1 = π−1(w∞), ∂4e
4 = 0, ∂3e

3 = l1 − l0, ∂2l0 = ∂2l1 = 0.

Moreover, we get a CW-complex and chain complex structure of Y (C) from that of CP2 through
a lift-up along g−1 (remember the action of g−1 on s is (x : y : z) 7→ (x : y : 0 : z)):

Y (C)\g−1(s) = e4
0 t e3

0 t e4
1te3

1, g−1(s) = e2
0 t e2

1 t e0,

e4
0 t e4

1 = {(x : y : r1 : z), x+ iy 6=0, x− iy 6= 0, arg
x+ iy

x− iy
6= π},

e3
0 t e3

1 = {(x : y : r1 : z), x+ iy 6=0, x− iy 6= 0, arg
x+ iy

x− iy
= π},

e2
0 = g−1(l0), e2

1 = g−1(l1), e0(0 : 0 : 0 : 1) = g−1(q1),

A4 = Ze4
0 ⊕ Ze4

1, A3 = Ze3
0 ⊕ Ze3

1, A2 = Ze2
0 ⊕ Ze2

1, A1 = 0, A0 = Ze0,

For any p(x : y : r1 : z) ∈ e3
0 t e3

1, we have x + iy 6= 0, x − iy 6= 0, and there exist λ < 0, such
that x+ iy = λ(x− iy). So r2

1 = (x+ iy)(x− iy) = λ(x− iy)2, r1 = ±
√
λ(x− iy). We may define

e3
0, e

3
1 and e4

0, e
4
1 according to the argument of r1

x−iy (both r1 and x− iy are non-zero in these cells):

e3
0 = {(x : y : r1 : z), x+ iy 6=0, x− iy 6= 0, arg

r1

x− iy
=
π

2
},

e3
1 = {(x : y : r1 : z), x+ iy 6=0, x− iy 6= 0, arg

r1

x− iy
= −π

2
},

e4
0 = {(x : y : r1 : z), x+ iy 6= 0,x− iy 6= 0,−π

2
< arg

r1

x− iy
<
π

2
},

e4
1 = {(x : y : r1 : z), x+ iy 6= 0,x− iy 6= 0,

π

2
< arg

r1

x− iy
<

3π

2
},

∂4e
4
0 = e3

1 − e3
0, ∂4e

4
1 = e3

0 − e3
1, ∂3e

3
0 = ∂3e

3
1 = e2

1 − e2
0, ∂2e

2
0 = ∂2e

2
1 = 0.

So the homology groups of Y (C) are

H4(Y (C),Z) = Z, H3(Y (C),Z) = 0, H2(Y (C),Z) = Z,
H1(Y (C),Z) = 0, H0(Y (C),Z) = Z.

There is another route to construct the CW-complex and chain complex structure for Y (C).
Let p∞,0(−i : 1 : 0 : 0), p∞,1(i : 1 : 0 : 0) be points in Y (C) such that r1 = z = 0. De-
fine π1 : Y (C)\{p∞,0, p∞,1} → CP1, (x : y : r1 : z) 7→ (r1 : z), then this map is well-defined.
Y (C)\g−1(s)\{z = 0} can be divided into 4 regions according to the argument of r1

z (note that we

12



can’t directly consider arg(r1) since it’s not well-defined):

d4
0 = {−π

2
< arg

r1

z
<
π

2
} = {<(

r1

z
) > 0}, d3

0 = {arg
r1

z
=
π

2
} = {<(

r1

z
) = 0,=(

r1

z
) > 0},

d4
1 = {π

2
< arg

r1

z
<

3π

2
} = {<(

r1

z
) < 0}, d3

1 = {arg
r1

z
= −π

2
} = {<(

r1

z
) = 0,=(

r1

z
) < 0},

Y (C) ∩ {r1 = 0} = g−1(s) = d2
0, Y (C) ∩ {z = 0} = d2

1,

d2
0 = g−1(s) = {(x : y : 0 : z), x2 + y2 =0}, d2

1 = {(x : y : r1 : 0), x2 + y2 = r2
1},

d2
0,0 = {(x : y : 0 : z), x+ iy = 0}, d2

0,1 = {(x : y : 0 : z), x− iy = 0},
p∞,0(−i : 1 : 0 : 0), p∞,1(i : 1 : 0 : 0), Y (C)\g−1(s)\{z = 0} = d4

0 t d4
1 t d3

0 t d3
1,

∂4d
4
0 = d3

0 − d3
1, ∂4d

4
1 = d3

1 − d3
0, ∂3d

3
0 = ∂3d

3
1 = d2

1 − d2
0,

ii) When ε 6= 0, Yε(C) is diffeomorphic to a complex 2-dimensional sphere. We may only
consider the case when ε = −1 since the complex structure of Yε(C) are all the same for different
ε 6= 0. Then the polynomial that defines Yε(C) becomes x2 + y2 = r2

1 + z2. We may rewrite it as
(x + iy)(x − iy) = (r1 + iz)(r1 − iz). By a change of variable, we see that Yε(C) is isomorphic to
ProjC[w0, w1, w2, w3]/ < w0w1−w2w3 >, where w0 = x+iy, w1 = x−iy, w2 = r1+iz, w3 = r1−iz. In
the chart {w3 6= 0}, set w3 = 1, then the projection (w0 : w1 : w2 : 1) 7→ (w0, w1) is an isomorphism.
Points of Yε(C) where w3 = 0 is isomorphic to {w0w1 = 0} ⊂ CP2 = ProjC[w0, w1, w2], which is the
union of two affine complex lines and one intersection point. The CW-complex and chain complex
structure of Yε(C), as well as its homology groups are given by:

A4 = Ze4, A3 = 0, A2 = Ze2
0 ⊕ Ze2

1, A1 = 0, A0 = Ze0,

∂4 = ∂3 = ∂2 = ∂1 = 0,

H4(Yε(C),Z) = Z, H3(Yε(C),Z) = 0, H2(Yε(C),Z) = Z2,

H1(Yε(C),Z) = 0, H0(Yε(C),Z) = Z.

2) Return to the case of X(C) and Xε(C), their CW-complex structures are hard to compute.
Define f : X(C)→ CP2, p(x : y : r1 : r2 : r3 : r4 : z) 7→ (x : y : z) ∈ CP2, then f is well-defined since
f(tp) = f(p), t ∈ C× and f(p) 6= (0 : 0 : 0). For any q(x : y : z) ∈ CP2, f−1(q) = (x : y :

√
x2 + y2 :√

(x− z)2 + y2 :
√
x2 + (y − z)2 :

√
(x− z)2 + (y − z)2 : z) where the square root functions above

are multi-valued. Let analyse the size of the fiber f−1(q) for different q ∈ CP2. Denote four conic
curves and their irreducible components in CP2 by

s1 : x2 + y2 = 0, l1,0 : x+ iy = 0, l1,1 : x− iy = 0,

s2 : (x− z)2 + y2 = 0, l2,0 : (x− z) + iy = 0, l2,1 : (x− z)− iy = 0,

s3 : x2 + (y − z)2 = 0, l3,0 : x+ i(y − z) = 0, l3,1 : x− i(y − z) = 0,

s4 : (x− z)2 + (y − z)2 = 0, l4,0 : (x− z) + i(y − z) = 0, l4,1 : (x− z)− i(y − z) = 0.

The 8 projective complex lines above has 18 joints in total, 2 of them meets 4 lines respectively,
16 of them meets 2 lines, among which 4 of them belong to single conic curve listed above. The
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coordinates of these points are given as follows:

q∞,0(−i : 1 : 0), q∞,1(i : 1 : 0),

qdb,1,2(
1

2
:
i

2
: 1), qdb,1,3(− i

2
:

1

2
: 1), qdb,1,4(

1− i
2

:
1 + i

2
: 1),

qdb,2,1(
1

2
: − i

2
: 1), qdb,2,3(

1− i
2

:
1− i

2
: 1), qdb,2,4(

2− i
2

:
1

2
: 1),

qdb,3,1(
i

2
:

1

2
: 1), qdb,3,2(

1 + i

2
:

1 + i

2
: 1), qdb,3,4(

1

2
:

2 + i

2
: 1),

qdb,4,1(
1 + i

2
:

1− i
2

:1), qdb,4,2(
2 + i

2
:

1

2
: 1), qdb,4,3(

1

2
:

2− i
2

: 1),

q1(0 : 0 : 1), q2(1 : 0 : 1), q3(0 : 1 : 1), q4(1 : 1 : 1).

We follow the notations of li,j , 1 ≤ i ≤ 4, 0 ≤ j ≤ 1 given above, but exclude 5 intersection
points from each one of them. Let s =

⋃
1≤i≤4 si be the union of the four conics above. Then a

disjoint union of s can be written as

s =
⊔

1≤i≤4,0≤j≤1

li,j
⊔

1≤i≤4

qi
⊔

1≤i 6=j≤4

qdb,i,j

⊔
0≤j≤1

q∞,j

q1 q2

q3 q4

We want to analyse the topology of CP2\s and s in detail. Define π0 : CP2\{q∞,0} → CP1, (x :
y : z) 7→ (x+ iy : z), π1 : CP2\{q∞,1} → CP1, (x : y : z) 7→ (x− iy : z), then π0, π1 are well-defined
since their images can’t be (0 : 0). While its domain is restricted to CP2\s, the fiber π−1

0 (q) of π0

at any point q(u : 1) ∈ CP1\{∞} is a complex projective line minus 4 points. For ∞(1 : 0) ∈ CP1,
its fiber π−1

0 (∞) is a complex projective line minus 2 points.
f is 16-fold on CP2\s, 8-fold on s besides the 14 joints between different conics, 4-fold on 12

joints which each meets 2 lines, and 1-fold on 2 joints which each meets 4 lines. So formally we have
the following partition of X(C) ignoring boundary maps, and its euler characteristic is known:

X(C) =
⊔

16× (CP2\s)
⊔

8× (s\{qdb,∗, q∞,∗})
⊔

4× qdb,∗
⊔
q∞,∗,

χ(CP2\s) = 9, χ(s\{qdb,∗, q∞,∗}) = χ(s)− χ(qdb,∗)− χ(q∞,∗) = −20,

χ(qdb,∗) = 12, χ(q∞,∗) =2, χ(X(C)) = 16 ∗ 9 + 8 ∗ (−20) + 4 ∗ 12 + 2 = 34.

X(C)\f−1(s)\{z = 0} can be divided into 256 regions according to the arguments of r1z ,
r2
z ,

r3
z ,

r4
z .

More precisely, we set z = 1 in the chart {z 6= 0}, and divide ran(ri) = C\{0} into 4 parts:

d0 = {−π
2
< arg(ri) <

π

2
} = {<(ri) > 0}, d1 = {arg(ri) =

π

2
} = {<(ri) = 0,=(ri) > 0},

d2 = {π
2
< arg(ri) <

3π

2
} = {<(ri) < 0}, d3 = {arg(ri) = −π

2
} = {<(ri) = 0,=(ri) < 0}.

Proof.
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4 Rational points on X and Xε

4.1 Prerequsites - Galois cohomology, class field theory and p-adic analysis

Definition 8. A number field is a finite extension of Q. A global function field is a finite extension
of Fp(t) for some prime p or, equivalently, is the function of a geometrically integral curve over a
finite field Fq, where q is a power of some prime p. Equivalently, a global field is the fraction field
of a finitely generated Z-algebra that is an integral domain of Krull dimension 1.

By a place of k, we always mean a nontrivial place of k. Let Ωk be the set of places of k.
If S is a finite nonempty subset of Ωk containing all the archimedean places, then the ring of

S-integers in k is
Ok,S = {a ∈ k, v(a) ≥ 0 for all v /∈ S}

The adèle ring of k is defined as the restricted product

A = Ak =
′∏

v∈Ωk

(kv,Ov)

it is a k-alglebra for the diagonal embedding of k, and it is equipped with the unique topology such
that: A is a topological group under addition; 2) the subset

∏
v∈Ωk

Ov is open; and 3) the subspace
topology on

∏
v∈Ωk

Ov agrees with the product topology.
The image of k in A is discrete, and A/k is compact.

Definition 9 (Galois cohomology). If A is a commutative group scheme over a field k, then the
notion Hq(k,A) denotes the Galois cohomology group Hq(Gal(ks/k), A(ks)), where ks denotes the
separable closure of k. This definition is made so as to agree with the étale cohomology group
Hq
et(Speck,A) of the sheaf defined by A on the étale site of Speck.

Intuitive guess: In our example, k = Q and A = (Z/2Z)4 = SpecQ[a1, a2, a3, a4]/ < a2
1 − 1, a2

2 −
1, a2

3−1, a2
4−1 >, and the group multiplication is given by element-wise multiplication. For a group

G and an abelian G-module M , we may define its cohomology groups Hq(G,M), q ≥ 0. If G acts
on M trivially, then H1(G,M) = Hom(G,M). I guess this is the case we are facing.

Note thatA = (Z/2Z)4 is an abelian group, so we have Hom(Gal(Qs/Q), A) = Hom(Gal(Qab/Q), A).
Actually we can go one more step, define the field Qdist = Q(

√
2,
√

5,
√

13,
√

17...), (Q with all
√
p

adjoined where p = 2 or p ≡ 1 mod 4).It is the smallest field that contains all the square roots of
x2 + y2, where x, y ∈ Q. Here I want to quote some famous results in class field theory that might
be used in this paper.

Theorem 6 (Local and global class field theory). 1) For any prime p, Gal(Qp[µp∞ ]/Qp) = Z×p , the

right hand side is isomorphic to (Z/pZ)× × Zp when p is odd. When p = 2, Z×2 is isomorphic to
(Z/4Z)× × Z2.

2) Globally, we have

Gal(Qab/Q) = Ẑ× =
∏

p prime

Z×p

3) If pi, 1 ≤ i ≤ n are different primes that are 2 or have residue 1 modulo 4. Let L =
Q(
√
p1, ...

√
pn), then Gal(L/Q) = (Z/2Z)n. As a result, we have

Gal(Qdist/Q) = lim
←

(Z/2Z)n =
∏

prime p=2 or p≡1 mod 4

Z/2Z

Question: does the right hand side hold? I want to give it a factorization as in 2)
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Let G = Gal(Qdist/Q), then for any q ∈ QP2, there is an G-action on the fiber Xq = f−1(q).
But in our scenerio A = (Z/2Z)4 acts on Xq by changing the signs of r1, r2, r3, r4, and this action
includes all the possible G-actions on the fiber Xq, so the G-action on Xq gives a homomorphism
in Hom(G,A) = H1(G,A). Note that usually we can only get a homomorphism from G to the
symmetry group of #Xq elements. The claim above restricts the image of such a homomorphism
inside A.

Proposition 7. We ask the following questions on every p-adic local ring Zp: What numbers can
have square roots inside Zp? What are the domain and range of exp, log, and (1 + x)α for fixed α?
Here we define the exponential and logarithm function by

exp(α) =
∞∑
n=0

αn

n!
, log(1 + α) =

∞∑
n=1

(−1)n−1α
n

n
, (1 + x)α =

∑
k≥0

(
α

k

)
xk

We require that α ∈ Zp. The answers are given below:
1) For p = 2, r = 2ab, v2(b) = 0 has a square root in Z2 if and only if 2|a, b ≡ 1 mod 8. exp(α) is
absolutely convergent when v2(α) ≥ 2, log(1 + α) is absolutely convergent when v2(α) ≥ 1.
2) For p 6= 2, r = pab, vp(b) = 0 has a square root in Zp if and only if 2|a, ( bp) = 1. exp(α) is
absolutely convergent when vp(α) ≥ 1, log(1 + α) is absolutely convergent when v2(α) ≥ 1.
3) If α is a non-negative integer, then certainly (1 + x)α is well defined for any x ∈ Zp. For any
other values of α, (1 + x)α converges absolutely when vp(x) ≥ 1.

Proof. If α ∈ Zp, then the binomial coefficient
(
α
k

)
∈ Zp for all non-negative integer k, so the

generalized binomial formula converges absolutely for vp(x) ≥ 1. Note that 1
2 ∈ Zp when p 6= 2, so

we get the analytical expansion of square root function in this case.

4.2 Results assuming Bombieri-Lang conjecture

Conjecture 1 (Bombieri-Lang). Let X be a smooth projective irreducible algebraic surface defined
over the rationals Q which is of general type. Then the set X(Q) of rational points of X is not
Zariski dense in X.

As [1] says, the Bombieri-Lang conjecture has been made for varieties of arbitrary dimension,
and for more general number fields than the rationals, but the above special case of the conjecture
is the only one needed for this application. The Bombieri-Lang conjecture is considered to be
extremely difficult, in particular being substantially harder than Faltings’ theorem, which is itself a
highly non-trivial result. So this implication should not be viewed as a practical route to resolving
the Erdös-Ulam problem unconditionally; rather, it is a demonstration of the power of the Bombieri-
Lang conjecture.

4.3 Descent obstruction

Theorem 7 (The descent obstruction to the local-global principle). Let k be a global field, X
be a k-variety. All the cohomologies below are fppf cohomologies. One can show that there is an
injection X(A)→

∏
µX(kµ), so an element of X(A) will be written as a sequence (xµ) indexed by

the places µ of k. The set X(k) embeds diagonally into X(A).
A torsor f : Z → X under a smooth affine algebraic group G over k restricts the locations in
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X(A) where rational points can lie. Namely, the commutativity of the following diagram:

X(k) X(A)

H1(k,G)
∏
µH

1(kµ, G)

Following the obstructions from functors, X(k) is contained in the subset X(A)f ⊂ X(A) consisting
of points of X(A) whose image in

∏
µH

1(kµ, G) comes from H1(k,G). One can also show that

X(A)f =
⋃

τ∈H1(k,G)

f τ (Zτ (A)),

and that X(A)f is closed in X(A) if Xis proper. One can constrain the possible locations of rational
points further by using many torsors:

X(A)H
1(X,G) =

⋂
G−torsors f :Z→X

X(A)f , X(A)descent =
⋂

smooth affine G

X(A)H
1(X,G)

Then X(k) ⊂ X(A)descent ⊂ X(A). One says that there is a descent obstruction to the local-global
principle if X(A) 6= ∅ but X(A)descent = ∅.

The following definition is extracted from [2], section 5.12.

Definition 10. 1) Let k be a field, let G be a smooth algebraic group over k. The trivial G-torsor
over k, which for convenience we denote by G, is the underlying variety of G equipped with the
right action of G by translation.

2) A G-torsor over k (also called torsor under G or principal homogeneous space of G) is a
k variety equipped with a right action of G such that Xks equipped with its right Gks-action is
isomorphic to Gks (the isomorphism is required to respect the right actions of Gks). A morphism
of G-torsors is a G-equivariant morphism of k-schemes.

3) Let X be a quasi-projective k-variety, let k′/k be a Galois extension of fields. A k′/k-twist
(or k′/k-form) of X is a k-variety Y such that there exists an isomorphism φ : Xk′ → Yk′ . A twist
of X is a ks/k-twist of X.

4) Let C be a category with finite products. Then a group object in C is an object G equipped
with morphisms m, i, e satisfying the group axioms: associativity, identity and inverse. A group
scheme G over a scheme S is a group object in the category of S-schemes.

5) Let G be a group, and let S be a scheme. For each σ ∈ G, let Sσ be a copy of S. Then⊔
σ∈G Sσ can be made a group scheme over S, by letting m map Sσ×S Sτ isomorphically to Sστ for

each σ, τ ∈ G. This is called a constant group scheme.

Example 1. 1) Let L ⊃ k be a finite Galois extension of fields. Let G be the constant group scheme
over k associated to Gal(L/k). Then the left action of Gal(L/k) on L induces a right action of G
on SpecL that makes SpecL a G-torsor over k.

2) Let T be the torus x2 + 2y2 = 1, then the affine variety X defined by x2 + 2y2 = −3 in Q2

can be viewed as a T -torsor over Q. It is a nontrivial torsor, since X(Q) = ∅.
3) For any fixed smooth algebraic group G over k, we have bijections:

{G-torsors over k} = {twists of G} = H1(k,G)
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The set of k-isomorphism classes of k′/k-twists of X is a pointed set, with neutral element given
by the isomorphism class of X. The action of Gal(k′/k) on k′ induces an action of Gal(k′/k) on the
automorphism group AutXk′ . There is a natural bijection of pointed sets

{k′/k-twists of X}
k-isomorphism

→ H1(Gal(k′/k),AutXk′)

Proposition 8. 1) Twisting a right torsor f : Y → X under G by a cocycle σ ∈ Z(k,G) produces
a right torsor fσ : Y σ → X under the twisted group Gσ. The subset fσ(Y σ(k)) ⊂ X(k) depends
only on the class [σ] ∈ H1(k,G).

2) H1(X,G) classifies X torsors under G up to isomorphism. We have the following partition:

X(k) =
⋃

σ∈H1(k,G)

fσ(Y σ(k))

3) Let f : Z → X be an G-torsor over X, and let ξ be its class in H1(X,G). If x ∈ X(k), then
its fiber Zx → {x} is a G-torsor over k, and its class in H1(k,G) will be denoted ξ(x). Thus the
torsor f gives rise to an evaluation map

X(k)→ H1(k,G), x 7→ ξ(x).

Example 2. Suppose that we want to find the rational solutions to

y2 = (x2 + 1)(x4 + 1)

Write x = X
Z , where X,Z are integers with gcd(X,Z) = 1. Then y = Y

Z3 for some integer Y with
gcd(Y,Z) = 1. We get

Y 2 = (X2 + Z2)(X4 + Z4)

If a prime p divides both X2 + Z2 and X4 + Z4, then

Z2 ≡ −X2 mod p, Z4 ≡ −X4 mod p,

2Z4 = (Z2)2 + Z4 ≡ (−X2)2 + (−X4) = 0 mod p,

2X4 = (X2)2 +X4 ≡ (−Z2)2 + (−Z4) = 0 mod p,

But gcd(X,Z) = 1, so this forces p = 2. Each odd prime p divides at most one of X2 + Z2 and
X4 + Z4, but the product (X2 + Z2)(X4 + Z4) is a square, so the exponent of p in each must be
even. In other words, X4 + Z4 = cW 2 for some c ∈ {1, 2}. Dividing by Z4 and setting w = W

Z2 , we
obtain a rational point on onw of the following smooth curves:

Y1 : w2 = x4 + 1, Y2 : 2w2 = x4 + 1.

Each curve Yc is of geometric genus g where 2g+2 = 4, i.e. g = 1. The point (x,w) = (0, 1) belongs
to Y1(Q), and (1, 1) belongs to Y2(Q), so both Y1, Y2 are open subsets of elliptic curves.

4.4 Rational points on Xε for ε = 1
2

Observe that the topological structure of Xε(R) is most simple when ε > 0, comparing with
those cases when ε = 0 and ε < 0. This observation inspires us to ask the following question:

Question 1. 1) For what ε ∈ Q+, does there exist rational points on Xε(R)?
2) How many rational points are there in Xε(R) for a given special value of ε ∈ Q+?
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The second observation is that we may exploit the symmetry from the certain given arrangement
of the four points in problem 1. If we set x = y = 1

2 , z = 1, then the absolute value of r1, r2, r3, r4

are all equal. More specifically, we may choose ε = 1
2 , then p0(1

2 : 1
2 : 1 : 1 : 1 : 1 : 1) ∈ Xε(Q) is a

rational point. We want to compute the tangent plane of Xε(R) at point p0, and we set z = 1 for
convenience.

Definition 11. We start by naming the polynomials that generates the ideal I(Xε). Let

F1 = x2 + y2 + ε− r2
1, F2 = (x− 1)2 + y2 + ε− r2

2,

F3 = x2 + (y − 1)2 + ε− r2
3, F4 = (x− 1)2 + (y − 1)2 + ε− r2

4.
(11)

The differential of the polynomials above are given by:

dFi =
∂Fi
∂x

dx+
∂Fi
∂y

dy +
∂Fi
∂r1

dr1 +
∂Fi
∂r2

dr2 +
∂Fi
∂r3

dr3 +
∂Fi
∂r4

dr4

The gradients, i.e. all the partial derivatives of F1, F2, F3, F4 are given as follows:

grad(F1) = (2x, 2y,−2r1, 0, 0, 0),

grad(F2) = (2(x− 1), 2y, 0,−2r2, 0, 0),

grad(F3) = (2x, 2(y − 1), 0, 0,−2r3, 0),

grad(F4) = (2(x− 1), 2(y − 1), 0, 0, 0,−2r4).

(12)

In the chart {z 6= 0} we set z = 1. Since fε gives a local parametrization of Xε(R) near point
p0(1

2 : 1
2 : 1 : 1 : 1 : 1 : 1), whose exact expression is:

r1 =
√
x2 + y2 + ε, r2 =

√
(x− 1)2 + y2 + ε,

r3 =
√
x2 + (y − 1)2 + ε, r4 =

√
(x− 1)2 + y2 + ε.

(13)

The tangent vectors of Xε(R) at any p(x : y : r1 : r2 : r3 : r4 : 1) ∈ Xε(R) is given by:

vx(1, 0,
x√

x2 + y2 + ε
,

x− 1√
(x− 1)2 + y2 + ε

,
x√

x2 + (y − 1)2 + ε
,

x− 1√
(x− 1)2 + (y − 1)2 + ε

),

vy(0, 1,
y√

x2 + y2 + ε
,

y√
(x− 1)2 + y2 + ε

,
y − 1√

x2 + (y − 1)2 + ε
,

y − 1√
(x− 1)2 + (y − 1)2 + ε

).

(14)

More specifically, at p0(1
2 : 1

2 : 1 : 1 : 1 : 1 : 1), these two vectors are:

vx(1, 0,
1

2
,−1

2
,
1

2
,−1

2
), vy(0, 1,

1

2
,
1

2
,−1

2
,−1

2
).

We can map the variety X to a hypersurface in Z ∈ P3. The morphism is given by

π : X → P3, p(x : y : r1 : r2 : r3 : r4 : z) 7→ π(p) = (x : y : r : z), r = r1 + r2 + r3 + r4.

Define the image π(X) = Z, it is a hypersurface in P3 defined by the ideal

I(Z) =< h >, h =
∏
g∈G

(r −
∑

1≤i≤4

g(r1, r2, r3, r4))

By Galois theory, h is a 16-degree homogeneous polynomial in Z[x, y, r, z]. I used SageMath to
calculate its exact form, but it is too complicated to be presented here.
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4.5 Yuan Yang’s argument on rational points with fixed x-coordinate

Theorem 8. Let r be a non-zero rational number, q1(0, 0), q3(0, 1), the following are equivalent:
1) There is a rational point q(x, y) on the line x = r such that r1, r3 are rational numbers.
2) The elliptic curve Er : y2 = x3 + ( 1

r2
− 1)x2 − 2

r2
x+ 1

r2
has rank at least 1.

Proof.

In [5], Berry wrote the equations in the following form with x, y eliminated:

2(r4
1 + z4) + r4

2 + r4
3 = 2(r2

2 + r2
3)(r2

1 + z2), r2
1 + r2

4 = r2
2 + r2

3.

The elimination of x, y can be performed as follows:

2xz − z2 = r2
1 − r2

2, x =
r2

1 − r2
2 + z2

2z
, 2yz − z2 = r2

1 − r2
3, y =

r2
1 − r2

3 + z2

2z
,

r2
1 = x2 + y2 =

(r2
1 − r2

2 + z2)2

4z2
+

(r2
1 − r2

3 + z2)2

4z2
=

2r4
1 + r4

2 + r4
3 + 2z4 + 4r2

1z
2 − 2(r2

1 + z2)(r2
2 + r2

3)

4z2
,

2r4
1 + r4

2 + r4
3 + 2z4 = 2(r2

1 + z2)(r2
2 + r2

3)

The quartic equation is the only constraint for 3-distance problem of q1(0, 0), q2(1, 0), q3(0, 1).
It turns out that its complex points S(C) is a Kummer surface, i.e. a quartic surface with exactly
16 singular points. Actually in the 3-distance problem, there are infinitely many one-parameter
families of rational points on S. In [5], the author summed up our knowledge of the 3-distance
problem in the following theorem:

Theorem 9. 1) The curves given in the table below are parametrized curves on S. Up to symmetry,
there are no further parametrizable cueves on S of degrees 2 or 4.

2) Infinitely many parametrizable curves can be obtained starting from C2, by successive pro-
jections from nodes 1 and 2.

r1 = 1− t2, r2 = t2 + 2t− 1, r3 = t2 + 1, z = r1 + r2,

r1 = 4t4 − 48t3 + 192t2 − 384t+ 256, r2 = 5t4 − 48t3 + 144t2 − 128t+ 64,

r3 = t4 − 16t3 + 144t62− 384t+ 320, z =
r1 + r3

2
,

r1 = t6 + 12t5 + 21t4 − 16t3 − 21t2 + 4t− 1, r2 = t6 + 6t5 + 29t4 + 44t3 − 13t2 − 2t− 1,

r3 = t6 + 4t5 + 7t4 + 24t3 + 39t2 − 12t+ 1, z = 10t5 + 40t4 + 28t3 − 24t2 + 10t,

r1 = 8t7 − 16t6 − 8t5 − 8t3 + 16t2 + 8t, r2 = t8 − 8t7 + 12t6 + 24t5 − 10t4 − 24t3 + 12t2 + 8t+ 1,

r3 = t8 + 12t6 − 32t5 − 10t4 + 32t3 + 12t2 + 1, z = t84t6 + 22t4 − 4t2 + 1,

While solving the equation in Qdist
p for sufficiently large p, can we identify which point has small

height? If p ∈ X(Qdist
p ) is such a point that xp, yp ∈ Q, with their heights bounded by H, what can

we say about it? We require that p is larger than height of x2 + y2, (x− 1)2 + y2, x2 + (y− 1)2, (x−
1)2 + (y − 1)2. A well-known theorem is that there are only finitely many extensions of Qp having
a fixed degree. When the degree is 2, quadratic extensions of Qp are classified by (Q×p /(Q×p )2)\{1}.
When p 6= 2, Q×p /(Q×p )2 = {1, ω, p, ωp} where ω is a non-quadratic residue modulo p. When p = 2,
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Q×2 /(Q
×
2 )2 = {1, 3, 5, 7, 2, 6, 10, 14}. Let r1,0 ∈ [p] ∪ [p]

√
ω be a solution to x2 + y2 ≡ r2

1,0 mod p.
Then the analytical solution is

r1 = (x2 + y2)1/2 = r1,0(1 + (
x2 + y2

r2
1,0

− 1))1/2 = r1,0

∑
k≥0

(
1/2

k

)
tk1, t1 =

x2 + y2

r2
1,0

− 1.

Similarly we can define the following variables:

r2 = ((x− 1)2 + y2)1/2 = r2,0(1 + (
(x− 1)2 + y2

r2
2,0

− 1))1/2 = r2,0

∑
k≥0

(
1/2

k

)
tk2,

r3 = (x2 + (y − 1)2)1/2 = r3,0(1 + (
x2 + (y − 1)2

r2
3,0

− 1))1/2 = r3,0

∑
k≥0

(
1/2

k

)
tk3,

r4 = ((x− 1)2 + (y − 1)2)1/2 = r4,0(1 + (
(x− 1)2 + (y − 1)2

r2
4,0

− 1))1/2 = r4,0

∑
k≥0

(
1/2

k

)
tk4,

t2 =
(x− 1)2 + y2

r2
2,0

− 1, t3 =
x2 + (y − 1)2

r2
3,0

− 1, t4 =
(x− 1)2 + (y − 1)2

r2
4,0

− 1.

In order to prove that r1, r2, r3, r4 aren’t all rational, it suffices to show that for any x, y ∈ Q,
at least one of r1, r2, r3, r4 has bad rational approximation. That is, |ri − r′|p > δ for any rational
r′ with bounded height. We formalize this idea as follows:

|
√
x2 + y2−r′1|+|

√
(x− 1)2 + y2−r′2|+|

√
x2 + (y − 1)2−r′3|+|

√
(x− 1)2 + (y − 1)2−r′4| > δ(H) > 0.

for a suitably chosen norm | · |, and x, y, r′1, r
′
2, r
′
3, r
′
4 ∈ Q are rationals with bounded height H.

Note that square root of a over R can be calculated by the iteration xn+1 = xn
2 + a

2xn
starting from

x0 = 1. This is known as Babylonian method, it’s a quadratically convergent algorithm. We may
also use continued fractions to approach ri. If ri ∈ Q, then its continued fraction terminates. The
problem turns to the following question: for any x, y ∈ Q, prove that at least one of the 4 continued
fractions is infinite.

|x2 + y2 − u2
1|+ |(x− z)2 + y2 − u2

2|+ |x2 + (y − z)2 − u2
3|+ |(x− z)2 + (y − z)2 − u2

4| > 0.

We want the inequality above hold for any integers with x, y, z not identically zero. The only
possibilities of (x, y, z) modulo 2 are (1, 0, 0), (0, 1, 0). The only possibilities of (x, y, z) modulo 4 are
(1, 0, 0), (3, 0, 0), (0, 1, 0), (0, 3, 0). But I think it’s not a good idea to formulate the problem in terms
of Z coefficients inequality, because it’s hard to solve it, just as in the case of integer programming.
The only way to solve it in this way uses diophantine approximation.
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